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Abllnc:t-A uniqueness theorem is first derived for a constitutive relation in the form of a nonlinear
memory integral with acing included. Uniqueness is proved for the solution to the dynamic mixed boundary
value problem with small deformations. The theorem is then specialized to a constitutive equation of the
isotropic power law type governing thermoirradiation induced creep.

I. INTRODUCTION
Uniqueness theorems of solutions for infinitesimal creep in linear viscoelastic materials have
been given by Gurtin and Sternberg[J), Edelstein and Gurtin[2], Odeh and Tadjbakhsh[3],
Lubliner and Sackman[4], and others. Sackman also gave theorems for nonlinear Maxwell
materials [5] and for materials undergoing nonlinear infinitesimal quasistatic steady creep with
elastic strain ignored [6]. Recently Edelstein gave uniqueness theorems for nonlinear creep with
strain hardening included [7] for a special domain and loading, and with the strain hardening
excluded[8] for more general domains and loading. In[9], a uniqueness theorem was given for
an isotropic nonlinear constitutive relation for thermal creep, which includes elastic strain,
transient creep, material aging and creep compressibility. Most recently, Gurtin, Reynolds and
Spector investigated the questions of uniqueness and stability in quasi.static nonlinear
viscoelasticity [10]. In the present paper we prove uniqueness for a constitutive relation which
includes the same effects as in[9] plus the additional effects of thermal expansion, irradiation
swelling, thermoirradiation induced creep, and temperature and flux dependent material proper·
ties. This constitutive relation is an extension of the one given in[l1] using the time hardening
(aging) procedure of[l2].

.A uniquenes theorem is first derived in Section 2 for a constitutive relation in the form of a
nonlinear memory integral with aging included, which is valid for homogeneous isotropic
materials characterized by a single creep function. Uniqueness is established for the dynamical
mixed boundary value problem assuming small deformations. Then in Section 3 we specialize
the uniqueness theorem of Section 2 to the constitutive equation for temperature and irradiation
induced creep mentioned above. We also comment on the applicability of the theorem of
Section 2 to a wide variety of other constitutive relations given in the literature.

2. A UNIQUENESS THEOREM

Theorem. Let Vbe an open bounded region in R) with regular boundary av=av., u av.,
av., n av. =tI> and let V=Vu aVo Let n be the unit outward normal vector to avo Let there
be given vector functions F(x, I) E C( Vx (0, 00», f(x, I) E C(aV., x (0, 00», g(x, I) E
CI(aVII x (0,00», hex) E C(V> and k(x) E C(V> satisfying the compatibility conditions

lim g(x, I) =hex),
1--0+

I, amx, I) =k( )
I~ al x,
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x E av",

x E av".
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Then, there exists at most one set of strains Eij(X, I) E CI(V X [0, r:ll» and stresses Uij(X, I) E
el

( Vx [0, r:ll» satisfying the constitutive relation (possibly nonlinear)t

( t) - (' J[ ( I') t' t] OUi' (x, I')d '
Ejj x, - Jo Ujj x, " at' t ,

in Vx [0,00), and the field, boundary and initial conditions

(where p(x) E C( V) is the mass density of the medium),

u;Jnj = Ij, on aVa x(0,00),

Uj=gj, on av" x(0, r:ll),

Uj= hj, in V at t = 0,;

aUj - k in V at t =0,ai"- i,

provided J satisfies

lim J[u;j(x, I), t', t] > 0,,'-.,
/'<1

lim aiJ~t [<Tij(X, t'), t', t] ~ 0,,'.....,
,'<I

and the continuity conditions

J[Uijo t', t] E C1(D x (0, (0) x(0, (0))

where D is some appropriate range for stresses containing 0 and

:r~;t [Ujj (x, t'), I', t]

and

a:~t [<Tjl(X, t'), I', t] E C(D x (0, (0) x(0, (0».

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

Furthermore, there is at most one displacement vector u(x, t) E ('2(V x [0, (0» defined up to a
rigid body displacement.

Proof. The rale of work W of the external forces can be expressed (upon using eqns 2.2 and
2.3 and the divergence theorem§) as

(2.10)

tWe assume that IIJ{I, 0) = CTiJ(I, 0) = 0; further discussion of this constitutive relation will be liven in the Remarks at
the end of the section and in Section 3.

*Inasmuch as liJ(X' 0) = 0 (see eqn 2.1), the hi'S cannot be chosen arbitrarily.
tThe divergence theorem can be used in view of the regularity assumption on av.
'The notation ltWldt is used to indicate that the rate of work is not in general the romoving derivative of an intel!'al.
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K =! ( au; au; d ~ 0
2)v P al al v
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is the kinetic energy.
Suppose O'lj, Elj, Ujl and O'~j, E~j, ul are two sets of solutions to eqns (2.1}-(2.7) and consider

the difference solution O'jj =O'h - O'~, etc. It satisfies eqns (2.2}-(2.7) with F == f == g == h == k == O.
Therefore, for the difference solution, d"W/dl =0 and W(I) =0 for all I E [0,00), i.e. integrating
(2.10)

(' ( ( ') aEjj(X, I') d dl'
O=K(I)+)o)vO'jjX,1 aI' v.

(2.1 I)

Substituting (2.1) in (2.11) and using Leibniz' rule (which is justified in view of the continuity
assumption on J) we obtain

O K( (' ( ( '){J[ I ( ') , '] aO'I;(x, I')= 1)+)o)vO'ijX,1 O'jjx,l,l,l aI'

-J[O'~(x I') I' I'] aO'~;(I, I') + (" [oj [0'·'(1 I") I" I']
Ij , " 01' Jo 01' jJ ' , ,

x OO'I;(x, I") oj [ ~.( I") I" I'] aO'j;(x, I")] dl"} d dl'
01" 01' 0' IJ x, "01" v,

or after regrouping terms (using O'jj =O'lj- O'~)

0= K(I) +L' Iv O'jj'(x, 1')J[O'~(x, I'), I', I'] aO'ii~:" I') dv dl'

+1,({J[ •( ') I' I'] J[ 2 ( I') I' ']} aO');(x, I') ( I') d d'o Jv O'jj x, I " - O'jj x, , ,I 01' O'jj x, v I

+l' (L" ( ') oj [ 2 ( I") " '] aO'«(x, I") d "d d'o Jv 0 O'jj x, I 01' 0' jj x, , I , I 01" I v I

+1' (l"{aJ[ I( ")" I'] aJ[ 2( ")" ,]}aO'I;(x,'") ( ')d"d d'o Jv 0 01' 0' jj x, I ,I, - 01' 0' jj x, I ,I, I 01" O'jj x, I I v I. (2.12)

Interchanging the order of integration, and integrating by parts (which is justified in view of
the continuity assumption on J and O'jj) the first integral in (2.12) becomes

Iv J[O'~(x, I), 1,1]12(x, I) dv - Iv L' ::. [O'~j(x,I'), I', 1']Mx, I') dl' dv, (2.13)

where 12(1,1) =(l/2)O'jj(x, I)O'ij(I,I) is the second invariant of the stress tensor. Since 12~ 0 we
can use the second law of the mean for the first integral in (2.13) to write (2.13) as

C. !/2(X,,) dv - L' Iv ::. [O'~(x, 1'),I',I']Mx, I') dv dl', (2.14)

where C. is a positive constant in view of (2.8) and the continuity assumptions on J, and order
of integration has been changed again.

Using the mean value theorem on the term in bracketst in the second integral in (2.12) we
can express this second integral as

1,( oj [- ( I') I' I'] aO'b(x, I') ( ') ( ')d d"o J
v

OO'
tl

O'ij x, " 01' O'tI x, I O'lj x, I v I,

where «Tij(x, I') is some intermediate value between O'lj(x, I') and O'fj(x, I').

t Justified in view of the continuity assumptions on J.

(2.15)
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Integrating by parts with respect to t" the third integral in (2.12) can be written as

21' I. aJ [ ~ ( ")" '11 1(' ,oval' aij x,t ,t,1 1"=1" 2 x,t)dvdl

1'1. r 2- 0 v Jo a:";1' [a~(x, t"), t'laij(x, t')ajj(x, t") d/" dv dt'

which upon using the second law of the mean for the first integral can be further expressed as

2C21o' Iv 12(x, t')dv dt' - 10' Iv L" a~:;tl [a~(x, t"), t", t'] aij(x, t')aij(x, t") dt" dv dt'

(2.16)

where C2~ 0 in view of assumption (2.9).
Use of the mean value theoremt on' the term in brackets in the last integral in (2.12) allows

us to write this integral as

('(1" a
2
J r A

( ") "t'laaJi(x,t") ( ") ( ')d"d d 'Jo Jv 0 aak/at' ai/ x, t , t , at" altJ x, t ai/ x, t t v t,

where Ui/(X, t") is some intermediate value between alj(x, t") and a~j(x, t").
Substitution of (2.14)-(2.17) in (2.12) leads to

0= K(t) +C1 f/2(X, t) dv - fa' fv ::' [a~j(x, t'), t', t']12(x, t') dv dt'

1,( aJ [- ( ') I '] aal; (x, t') ( ') ( ') d d I+ 0 Jv aakl ai/ x, t ,t, t at' ak/ x, t ai/ x, t v t

+2C2 fa' f/2(X, t')dv dt' - fa' Ivra~:;t' [a~j(x, t"), t", t']

x ajj(x, t')aij(X, til) dt" dv dt' + fa' Ivra:::Ot' [Ui/(X, til), til, t']

x aal;(x, t") no (x t")a··(x t') dt" dv dt'at" vkl, 'J'

which in view of the non-negativeness of K, 12, C, and C2 yields

O::s C1 Iv 12(x, t) dv +2C2fa' Iv 12(x, t')dv dt'::S fo' Iv ::' [a~(x, t'), t', t']

x 12(x, t') dv dt' +fa' Ivra~:;tl [a~/(x, t"), til, t']ai/(X' t')

x a··(x t'1 dt" dv dt' - (' ( aJ [U"(x t') t' t'] aal;(x, t')
II , Jo Jv aakl '1 ' " at'

X ak/(x, t')aij(x, t')dv dt' - fa' Ivra::~t' [Uij(X, n, til, t']

aal;<x, til) ( ") ( ') dt" d d'x at" ak/ x, t aij x, t v t.

(2.17)

(2.18)

Using the standard inequalities for magnitudes la ± bl::s lal + Ibl and lItI::s fltl, and the
continuity assumptions on J, the r.h.s. of the second inequality in (2.18) is bounded by

tJustified in view of the continuity assumptions on J.
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C3 L' Iv 12(x. I') dv d/' +C. L' Iv L" 100ij(x. 1')O'ij(X. nl dIn dv dt'

+1,f IaJ [- ( I') , I'] IlaO'!;(x. 1')11 ( ') ( I') Id d'o JV au", O'jj x. • I • aI' Uk/ x. t O'ij x, v I

i'il"1 a2J ~a I( n)/I I+ • n n, 0';; x,tn, n ,
\l v 0 aO'",at' [O'ij(X, t ), I • t ] iJtn O'k/(X. t )O'ij(X, t) dt dv dl
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(2.19)

where C3 and C. are positive constants (the existence of which is guaranteed by the continuity
assumption on J) such tbat for I'. In E (0, I)

IiJ;:;1' [O'ij(X. I"), I", I']I:s; C•.

Let Aii> BiJ, i, j = I, 2, 3, be constants such that

/
aO'l,/
~ sBir

(The existence of such constants is guaranteed by the continuity assumptions on J and 0'.)
Then, the integrand of the third term in (2.19) is bounded by

itself bounded by

where

A =max Aiit B =max Bij,
;,j i,j

3 3
Since via Cauchy's inequality ( I 100ij 1)2 :s; 9 I IO'ijr= 1812• the third term in (2.19) is bounded
by ;,j-I ;,j-I

c, L' Iv 12(x, t') dv dt'

where C, = 18AB is a positive constant.
Similarly. invoking the boundedness of la2J(O', t', t)/oujjotl (which follows from continuity

assumptions), one can bound the last term in (2.19) by

C,l' f f" I~ Uk/(x, t") ±Ui/(X, t')/ dt" dv dt'oJv Jo /c1!.. ;,j-I

where C,>O,
Consequently, (2.19) is bounded by

C3 L' Iv 12(x, t') dv dt' +C.L' Iv L" IUI/(x, t')Ulj(X, t")1 dt" dv dt'

+C, f' ( 12(x, t') dv dt' +C, (' ( f'" ~ O'k/(X, tll).~ uij(x, t')/ dt" dv dt'. (2.20)
)0 Jv Jo Jv Jo 1c.*1 ..~I

Making use of the Schwarz inequality corresponding to the inner product (f, g) =Iv fqgiJ dv
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for second rank tensor fields f, g and interchanging the order of integration, the second term in
(2.20) is bounded by

(' (t' (( )1/2( ( )1/2
C4 J

o
J
o

Jv 212(x, t') dv Jv 2l2(x, to) dv dt" dt'.

Similarly, recalling (~ (J'iY =:; 1812, the last term in (2.20) is bounded by

C6fr(Iv 1812(x, t') dvr2(f 18lz(x, to) dv yl2 dt" dt'.

Thus, from (2.18), (2.20) and the above bounds we obtain, upon setting

(2.21)

Since

the last step following from Schwarz' inequality, and since C2~ 0, (2.21) yields

(2.22)

Let arbitrary T >0 be given. Then (2.22) implies

(2.23)

for all t E [0, T] and where (since C1> 0)

Inasmuch as v2(0) = 0, it follows from (2.23) and Gronwall's inequalityt that v2=0 in [0, T]
for any T> O. Thus

(J'jj(X, t) =0, (x, t) E Vx [0,00),

Le. the stresses are unique. The uniqueness of the strains follows from that of the stresses and
(2.1) while uniqueness (up to a rigid body displacement) of the displacement vector follows
from that of the strains and (2.3), (2.5) and (2.6H2.7). This completes the proof of the theorem.

Remark 2.1. Conditions (2.8H2.9) as well as the continuity assumptions on the creep
function J are sufficient for uniqueness but not necessary, as they are sufficient but not
necessary to carry out some of the steps in the proof: integration by parts, use of the mean
value theorem, etc.

Remark 2.2. Conditions (2.8) and (2.9) are conditions on the instantaneous response of the
material. The conditions that (aJ/at)[(J'ij, t, t] and (aJ/a(J'k/)[(J'jjo t, t] be continuous in (J'jj and t,
used to carry out the steps leading to (2.13), (2.15) and (2.20) and which are satisfied when J
satisfies the continuity hypotheses of the Theorem, are also conditions on the instantaneous

tDetails on Gronwall's inequality, as well as the various other inequalities used in this proof, are given in [131.
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response of the material. Note that no other conditions are imposed on the instantaneous
response which can be linear or nonlinear elastic, include thermal expansion and irradiation
swelling (see Section 3), etc.

Remark 2.3. The constitutive relation (2.1) is valid for homogeneous isotropic materials
characterized by a single creep function. It is general enough to include many constitutive
relations proposed to date (see Section 3).

Remark 2.4. The problem considered is only mildly nonlinear in the sense that only the
constitutive relation (2.1) is nonlinear but the field equations and boundary and initial conditions
are linear. The above theorem will apply to uncoupled nonlinear thermoviscoelasticity and/or
uncoupled irradioviscoelasticity (see Section 3). For the coupled problems however nonlinearity
in the field equations would appear and the theorem would not apply.

Remark 2.5. When the constitutive relation (2.1) is linear the theorem provides an alternate
uniqueness theorem for linear viscoelasticity. However the proof can be greatly simplified in
this case since J[O'lj, t't] - J[O'~, t't] = J[O'jj, t't]. Incidentally, this last relationship was tacitly
and erroneously assumed in the proof of the uniqueness theorem in [9]. The proof given here
provides a correct substitute.

3. APPLICATION TO TEMPERATURE AND IRRADIATION INDUCED CREEP

In [II] Cozzarelli and Huang proposed a constitutive relation for thermoirradiation induced
creep which includes as a particular case a nonlinear constitutive equation of the isotropic
power law type in terms of memory integrals (see eqn (41) in [12]). We first extend this
constitutive relation so as to include aging effects through a time hardening procedure similar
to that of [12] and thereby obtain an expression in the form of eqn (2.1). Then we specialize the
uniqueness theorem of Section 2 to the constitutive relation so obtained thereby obtaining some
restrictions on the various material constants appearing in the relation.

The strain-stress relationship to be considered can be written as

,,( t) =a~[O'jl(l, t), t]
E,j I, !l

UO'jj

where the energy functional ~ is given by

(3.1)

~ = UTE +O'jj l' [TJr(t) - TJr(t')] ~, ea~:) dt' +O'jj ~I l' {I- exp [- Alkl(TJr(t) - TJr(t'»]}

X {ar(kl +(1- ar(kl) exp [- AiklTJr(t')]} :r, (a~~) dt' +O'jj l' [TJR(t) - TJR(t')] :r, (o~s) dt'

+O'jj f (' {I- exp [- AR(kl(TJR(t) - TJR(t'»)]}
kzl Jo

x {OR(kl +(1- OR(kl) exp [- AR(kl TJR (t')]} J, (aU~t) dt' (3.2)
at oO'jj

and where

55 Vol. 17. No. l-C

k=I, ... ,M,

k=I, ... ,N,

(3.3a)

(3.3b)

(3Jc)

(3Jd)

(3Je)
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are respectively the thermoirradioelastic. steady thermal creep. transient thermal creep. steady
irradiation creep. transient irradiation creep complementary potentials. In eqns (3.3) II = Ujj and
/2 = O/2)ujjujj are respectively the first and second invariants of the stress tensor; E is the
elastic modulus. "E is Poisson's ratio. ar and aR are the coefficients of thermal expansion and
swelling respectively; 8 is the temperature measured from some constant reference and n is
the imperfection density increment from some constant reference; Crs, CW's. CRS. C1t's. Mrs.
M\#'s, MRs, M~t·s. "rs. ,,\#'s, "RS and ,,~t's are material constants. the first four being
positive and the next four being non-negative integers.

In eqn (3.2) ai·) and aR(·) are the thermal and irradiation hardening parameters respectively;
Ar(·) and AR(·) are constants the reciprocal of which are analogous to retardation times. Finally,
'1r(t) and '1R(t) are the thermal and irradiation reduced times which account for temperature and
ftux dependent material properties; they are defined as

where cI>Rand cl>r are functions of temperature T, and 'ItR and 'Itr are functions of the time rate
of change of the imperfection density Ii (and hence of neutron ftux).

Substituting (3.3) in (3.2) and (3.2) in (3.1) yields

( ) - (' J[ ( ') , ] aU;j(x. t ' ) d 'E;j x, t - J
o

Ujj x, t , t , tat' t

which is identical to eqn (2.1) with

J[Ujj(X. t'). t ' • t] = a2UrE~;?(X. t')] +['1r(t) -'1r(t')] a2Urs~~~.(x.t')]
~ ~

M

+L {I - exp [- Aik)("Ir(t) -"Ir(t'))]}{arCk )+(1- ar(·)) exp [- ArCk) "Ir (t')]}.-1

(3.4)

x a2U\#[u~j(x. t')] +["IR(t) - '1R(t')] a
2
URS[u;!(x. t')] +f {I- exp [- ARCk)( "IR(t) -"IR(t'))]}

aU;j aU;j k=1

x {aR(k) + (1 - aR(k») exp [- ARCk) "IR(t')]} a
2
U~ta[:~:(X' t')] (3.5)

being the thermoirradiation induced creep function. Equation (3.1) with ~ given by (3.2) is an
extension of constitutive relation (41) in [II] which includes aging effects through time
hardening.

It is now easy to check that J as given by eqn (3.5) satisfies all the hypotheses of the
uniqueness theorem of Section 2 provided.

E~O.

ArCk) ~ O. atk)~ O.

ARC.) ~ O. aR(kl ~ O.

d"1r >0 d"1R >0
dt - , dt - .

k= I•...• M.

k= I•...• N.

(3.6)

Remark 4.1. The constants "RS. "rs. "Rr. "IT are analogous to Poisson's ratio "E [II].
Consequently the requirement that they be greater than - I and less than or equal to 1/2 is quite
natural.

Remark 4.2. The conditions at·), aR(·) ~ 0 are weaker than the physical conditions 0 :s: atk).
aR(·):S: I given in [12].
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Remark 4.3. The non decreasingness assumption on TIT and TlR will be satisfied if in
particular 4>T 'I'T ~ 0 and 4>R 'I'R ~ 0, which is observed experimentally [II]. Furthermore, when
one introduces a reduced time one would normally expect a one to one correspondance
between real time and reduced time[I4] and thus one would normally assume that the reduced
time is a strictly monotone function of real time.

Finally, we should note that constitutive relations in the form of eqn (2.1) [also (3.4)] are
often termed modified (i.e. nonlinear) superposition integrals (with aging included) and arise in
continuum mechanical studies of many viscoelastic materials including polymers, concrete and
metals at elevated temperatures. Thus one could also easily specialize the uniqueness theorem
of Section 2 to a wide variety of other constitutive relations which have been presented in the
literature. Such relations were first proposed some years ago (see Leaderman[15],
Rabotnov[I6] (somewhat different form) and Arutyunyan[17]), although during the last ten
years they have received renewed attention (see [11,12], Schapery[18], Findley and Lai[19],
Pipkin and Rogers[20], Rabotnov et 0/.[21], Stouffer[22], Distefano and Todeschini[23] and
Rashid [24]).

Acknowledgement-The authors wish to thank the referees for their valuable comments.
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